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1. Introduction. The variety of financial products in recent years grew much
quicker than ever before. The recent financial crisis has highlighted the need for a
more scientific approach to the problem of pricing of these products, taking advan-
tage of more advanced statistical and mathematical skills and of the availability of
numerical techniques and faster computer systems. In particular in this paper we
will illustrate a new algorithm, the so-called SABO (Semi- Analytical method for
pricing of Barrier Options), to evaluate Asian options with barriers. Asian options
are derivative contracts whose payoff at maturity depends on the (geometric or arith-
metic) average value of an underlying asset over some time interval; in the case of
“barrier option”, these contracts get into existence or extinguish when the underlying
asset reaches a certain barrier value. With respect to European vanilla option, the
buyer has a reasonable protection against inconvenient fluctuations in the underlying
price and the issuer can attain a better forecasting of the terminal position. For stan-
dard Asian options with geometric mean equipped with floating or fixed strike price,
closed formula solutions are available for example in Ref. [14] but if the contract
involves non standard payoffs or arithmetic mean or barriers, numerical techniques
are unavoidable. The pricing is then traditionally based on Monte Carlo methods
or on domain methods, such as Finite Volumes and Finite Differences, but Monte
Carlo methods are affected by high computational costs and inaccuracy due to their
slow convergence and domain methods have some troubles particularly in unbounded
domains due to the need of applying artificial and therefore sometimes inaccurate
boundary conditions. For a deep survey on the matter, look at Ref. [6]. Barrier op-
tions are largely exchanged as they are good products for hedging and investment and
they are cheaper than vanilla options but, for Asian options, we found in literature
only the analysis of Ref. [2] which provides rigorous bounds in the arithmetic mean
case.
SABO has been recently introduced for the computation of European barrier options
within various differential models in Refs. [7, 8, 9]. This new approach, based on
Boundary Element Method Refs. [3, 4], turns out to be stable and efficient especially
when the differential problem is defined in an unbounded domain and the data are
assigned on a limited boundary (which is the case of the “barrier options”). The
method is particularly advantageous for its high accuracy, for the implicit satisfaction
of the far-field behavior of the solution and for the low discretization costs. Moreover
it provides a straight hedging computation. The essential requisite, that makes it not
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as general as other numerical methods is that, for its application, we need the knowl-
edge of the transition probability density related to the vanilla option problem, at
least in an approximated form. The method is here applied to Asian barrier options
evaluated with geometric mean that, although not common among practitioners, give
some information also about the evaluation of Asian barrier options with arithmetic
mean. The obtained results are then compared with numerical results obtained by
two finite difference methods among the great variety that we can find in literature
(resumed for example in Ref. [11]). The application of finite difference methods is not
straightforward since explicit boundary conditions have to be derived from financial
conditions in such a way to ensure wellposedness of the starting differential problem
Ref. [12] and to avoid oscillations.
Anyway finite difference methods result to be very slow and computing power and
time are necessary to reduce the error (as concluded also in Ref. [11] in the case of
arithmetic Asian options1), therefore SABO seems to be a numerical method that
overcomes this issue. The method is developed in the paper for continuously sampled
geometric Asian option with no restriction w.r.t. payoff functions. From a theoreti-
cal point of view the method is extensible to arithmetic Asian option too with slight
modification but, from numerical point of view, there are several troubles that we are
going to investigate in the next future. The paper is structured as follows: Sec. 2
introduces the model problem, while SABO is described in Sec. 3. Sec. 4 presents
finite difference schemes used for comparison and numerical results are reported in
Sec. 5. Conclusions are briefly drawn in Sec. 6.

2. The differential model problem. In the geometric Asian option contract
the final value V of the option depends not only on the stock price St but also
on its evolution through the duration of the contract (assumed to be [0, T ]) and
specifically on its average. The determination of the average value of the underlying
prices depends on the following factors: the time detection interval; the type of average
that can be arithmetic or geometric; the weight assigned to each price depending on
the importance of the period. In this paper we are going to consider the geometric
average of the stock price over [0, T ]. Defining the stochastic process2

(2.1) At :=
∫ t

0

log(Sτ )dτ

1“...the differential operator... has degenerated elliptic S and A parts... Such degeneracy could
be expected to generate oscillations in numerical solutions which might be avoided by adding some
(non negative) amount of artificial viscosity... Adding artificial viscosity generally smoothens out a
numerical solution, but also decreases the precision since we are now considering a different problem”.
In the paper, J.E. Zhang investigates a lot of finite difference methods concluding that “The first
order consistent time stepping is showing linear convergence in the τ variable. Instead both the first
and second order consistent methods in the S variable are showing only linear convergence in this
variable. Finally, the linearly consistent method in the A variable is showing a very slow 1/2 order
convergence in this variable”.

2When A and S are written with subscripts (At and St) they are intended as stochastic processes,
otherwise, they are considered independent variables in the differential analysis context.
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then the geometric average is exp
(

At

t

)
and the payoff may define different types of

Asian option contract, among which:

floating strike callV (S, A, T ) = max
(

S − exp
(

A

T

)
, 0

)
(2.2)

floating strike putV (S, A, T ) = max
(

exp
(

A

T

)
− S, 0

)
(2.3)

fixed strike callV (S, A, T ) = max
(

exp
(

A

T

)
− E, 0

)
(2.4)

fixed strike putV (S, A, T ) = max
(

E − exp
(

A

T

)
, 0

)
(2.5)

for S ∈ R+, A ∈ R and E the strike price.
By consequence the Asian option value depends on (S, A, t) through its whole duration
and it is known (for example from Refs. [16, 17]) that, if St is modeled by a geometric
Brownian motion, it satisfies the partial differential equation (PDE):

(2.6)
∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ rS

∂V

∂S
+ log(S)

∂V

∂A
− rV = 0 S ∈ R+, A ∈ R, t ∈ [0, T )

where r denotes the risk free interest rate and σ the volatility.
The existence and uniqueness for (2.6) are stated in Ref. [15] and the exact option
value V (S, A, t) is known to be the payoff expected value:

(2.7) V (S,A, t) =
∫ +∞

−∞

∫ +∞

0

V (S̃, Ã, T )G(S,A, t; S̃, Ã, T )dS̃ dÃ ,

provided that the transition probability density function G(S,A, t; S̃, Ã, t̃) is available.
From Refs. [5, 1] we have3:
(2.8)

G(S, A, t; S̃, Ã, t̃) =
√

3H[t̃−t]

πσ2(t̃−t)2
exp

{
− 2

σ2(t̃−t)
log2

(
S

S̃

)
+ 6

σ2(t̃−t)2
log

(
S

S̃

) (
A− Ã + (t̃− t) log(S)

)

− 6
σ2(t̃−t)3

(
A− Ã + (t̃− t) log(S)

)2 −
(

2r+σ2

2
√

2σ

)2

(t̃− t)
} (

S̃
S

) 2r−σ2

2σ2 1

S̃
.

When considering the particular payoff related to fixed strike options or floating strike
options, the exact solution can be evaluated also by more efficient closed-formulas of
Black-Scholes type that involve normal cumulative distributions (Refs. [14, 18]). In
this starting model problem some barriers can be inserted, as often done with Eu-
ropean options, but in this case no closed-formulas are available; as example of a
barrier contract, a geometric Asian up-and-out barrier call option is an option that
is extinguished when the price of the underlying asset grows up enough to breach an
assigned upper barrier B before the expiry date T . Barrier options are very common
among practitioners because they are cheaper than vanilla option and because they
give greater protection against excessive fluctuations of strike price.
The modeling differential problem for a geometric Asian option with up-and-out bar-
rier is:

(2.9)
∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+rS

∂V

∂S
+log(S)

∂V

∂A
−rV = 0 , S ∈ (0, B), A ∈ R, t ∈ [0, T )

3H[·] denotes the Heaviside step function.
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(2.10) V (S, A, T ) assigned , S ∈ (0, B), A ∈ R

(2.11) V (B,A, t) = 0 , A ∈ R, t ∈ [0, T )

(2.12)
asymptotic conditions of vanilla option , {(S, A) : S = 0 ∨A → −∞∨A → +∞}.

The method, that we will illustrate in the following section for the solution of (2.9)-
(2.12), is rather flexible; therefore it can be easily extended also to Asian call options
with other types of barrier, that widen or contract (moving barriers), and to put
options, too.
Note that boundary conditions (2.12) are not explicitly assigned. Explicit boundary
conditions are not available in literature but some boundary conditions are implicitly
embodied in the representation formula (2.7) and they are such to assure existence
and uniqueness of the Cauchy partial differential problem solution (look at Ref.[1]).

3. Semi-Analytical method for Barrier Options pricing. SABO is the
acronym of Semi-Analytical method for the pricing of Barrier Options and it has
been introduced for European options both in Black-Scholes Refs. [7, 8] and in He-
ston and Bates Ref. [9] frameworks. For geometric Asian option a formal and deep
argumentation is described in Ref. [1] and it proceeds as follows.

• The integral representation formula in the domain of the differential
problem

The value V (S, A, t) of an up-and-out barrier call option satisfying the differential
problem (2.9)-(2.12) is given by the integral representation formula proven in Ref.
[1]:

(3.1)
V (S, A, t) =

∫ +∞

−∞

∫ B

0

V (S̃, Ã, T )G(S, A, t; S̃, Ã, T )dS̃ dÃ
∫ T

t

∫ +∞

−∞

σ2

2
B2 ∂V

∂S̃
(B, Ã, t̃)G(S, A, t; B, Ã, t̃)dÃ dt̃ .

at every point (S, A, t) in the existence domain Ω× [0, T ) with Ω := (0, B)× R.

• The boundary integral equation (BIE)

In the integral formula (3.1) ∂V

∂S̃
(B, Ã, t̃) is unknown so we cannot apply directly (3.1)

to get the solution over the whole domain Ω× [0, T ). But if we consider the limit for
S → B in (3.1) and apply the boundary condition (2.11), we obtain the BIE

(3.2)
0 = V (B, A, t) =

∫ +∞

−∞

∫ B

0

V (S̃, Ã, T )G(B, A, t; S̃, Ã, T )dS̃ dÃ

+
∫ T

t

∫ +∞

−∞

σ2

2
B2 ∂V

∂S̃
(B, Ã, t̃)G(B, A, t; B, Ã, t̃)dÃ dt̃ .
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in the sole unknown ∂V

∂S̃
(B, Ã, t̃).

Next goal is to implement a strategy for numerically solving (3.2). The approxima-
tion of ∂V

∂S̃
(B, Ã, t̃) will be then inserted in the representation formula (3.1), to get

the solution V at every desired point of the domain Ω× [0, T ).

• Collocation method for the numerical resolution of (3.2)

We are going to approximate the BIE unknown ∂V

∂S̃
(B, Ã, t̃) by collocation method as

done in Ref. [1].
The time interval [0, T ] is uniformly decomposed by means of

(3.3) ∆t :=
T

Nt
, Nt ∈ N+, tk := k∆t, k = 0, . . . , Nt

and the BIE unknown is represented in time by piecewise constant basis functions

ϕk(t̃) := H[t̃− tk−1]−H[t̃− tk], k = 1, . . . , Nt .

The unbounded A-domain ≡ R needs4 to be truncated by [Amin, Amax]. This cut is
substantially involved only in the evaluation of the second term of (3.2) whose inte-
grand function is dominated by the behavior of the transition probability density G.
A suitable choice of bounds can be determined by the following considerations and
looking at the graph of Erf function5 (Fig. 1):

∫ T

t

∫ +∞

−∞
G(B, A, t; B, Ã, t̃)dÃ dt̃

= −
∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)

2Bσ
√

2π(t̃− t)
Erf

[√
6
(
A− Ã + (t̃− t) log(B)

)

(t̃− t)3/2σ

] ∣∣∣∣
Ã→+∞

Ã→−∞
dt̃

=
∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)

Bσ
√

2π(t̃− t)
dt̃ =

2Erf
[

(2r+σ2)
√

T−t

2σ
√

2

]

B(2r + σ2)
−10 −5 0 5 10

−1.5

−1

−0.5

0

0.5

1

1.5

s

E
rf

 [s
]

Fig. 1: Graph of Erf function.

hence, we can properly define Amax as the root of the non linear equation below
(3.4)

−
∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)

2Bσ
√

2π(t̃− t)
Erf

[√
6
(
A−Amax + (t̃− t) log(B)

)

(t̃− t)3/2σ

]
dt̃ =

Erf
[

(2r+σ2)
√

T−t

2σ
√

2

]

B(2r + σ2)

4Thought, in Ref.[1], we have explored the possibility to avoid truncation and using instead
infinite elements with equivalent numerical results.

5The definition of the Error Function is

Erf[z] :=
2√
π

∫ z

0
e−s2

ds

and that of its complement is Erfc[z] := 1− Erf[z].
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and Amin as the root of the following non linear equation below
(3.5)
∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)

2Bσ
√

2π(t̃− t)
Erf

[√
6
(
A−Amin + (t̃− t) log(B)

)

(t̃− t)3/2σ

]
dt̃ =

Erf
[

(2r+σ2)
√

T−t

2σ
√

2

]

B(2r + σ2)

approximating them by Matlab fzero function with a tolerance equal to 10−10.
Afterwards, we state

(3.6) ∆A :=
Amax −Amin

NA
, NA ∈ N+, Ah := Amin + h∆A, h = 0, . . . , NA

and the representation of the BIE unknown in the independent variable A is given by
piecewise constant basis functions as

ψh(Ã) := H[Ã−Ah−1]−H[Ã−Ah], h = 1, . . . , NA .

In Ref. [1], ψ0 and ψNA
are chosen as infinite elements over (−∞, A1) and (ANA−1,+∞)

respectively but the choice of all elements equal on [Amin, Amax] gives us a little compu-
tational saving and the difference in numerical results is insignificant because, outside
the interval [Amin, Amax], the integrals with kernel G involved in (3.1) are negligible.
The BIE unknown is then approximated by

(3.7)
∂V

∂S̃
(B, Ã, t̃) ≈

Nt∑

k=1

NA∑

h=1

α
(k)
h ψh(Ã)ϕk(t̃)

and the boundary integral equation (3.2) is evaluated at the collocation points (Ai, tj)
chosen as the centers of intervals [Ai−1, Ai], [tj−1, tj ], i.e.

Ai =
Ai + Ai−1

2
, i = 1, . . . , NA tj =

tj + tj−1

2
, j = 1, . . . , Nt .

The resulting linear system of NA ×Nt equations is:

∫ T

tj

∫ +∞

−∞

σ2

2
B2

Nt∑

k=1

NA∑

h=1

α
(k)
h ψh(Ã)ϕk(t̃)G(B, Ai, tj ;B, Ã, t̃) dÃ dt̃ =

−
∫ +∞

−∞

∫ B

0

V (S̃, Ã, T )G(B, Ai, tj ; S̃, Ã, T ) dS̃ dÃ

for i = 1, . . . , NA, j = 1, . . . , Nt

in matrix form

(3.8) Aα = F ,

where the unknowns are the coefficients of linear representation in (3.7)

α = (α(k)
∣∣
k=1,...,Nt

) =
(
(α(k)

h

∣∣
h=1,...,NA

)
∣∣
k=1,...,Nt

)
.

The matrix entries are:
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for i, h = 1, . . . , NA, j, k = 1, . . . , Nt

A(jk)
ih =

σ2

2
B2

∫ T

tj

∫ +∞

−∞
ψh(Ã)ϕk(t̃)G(B, Ai, tj ; B, Ã, t̃) dÃ dt̃ =

σ2

2
B2H[tk − tj ]

∫ tk

max(tk−1,tj)

∫ Ah

Ah−1

√
3

πσ2(t̃− tj)2B

exp

{
−6

(
Ai − Ã + (t̃− tj) log(B)

)2

σ2(t̃− tj)3
−

(
2r + σ2

2
√

2σ

)2

(t̃− tj)

}
dÃ dt̃

and, since equation (2.9) has constant parameters w.r.t. t and A variables, they
depend only on the difference between time instants and between grid A-points. So,
defining ξ = i − h, ξ = −NA + 1, . . . , NA − 1 and ` = k − j, ` = 0, . . . , Nt − 1,
performing the change of variable t̃ = ∆t(τ+k−1), we get t̃−tj = ∆t(τ+k−j−1/2) =
∆t(τ + `− 1/2) and therefore
(3.9)

A(jk)
ih =

B
√

3
2π∆t

∫ 1

1
2− 1

2 H[`]

∫ Ah

Ah−1

1
(τ + `− 1/2)2

exp

{
−6

(
Ai − Ã + ∆t(τ + `− 1/2) log(B)

)2

σ2∆t3(τ + `− 1/2)3
−

(
2r + σ2

2
√

2σ

)2

∆t(τ + `− 1/2)

}
dÃ dτ

=
σB∆t

4
√

2π

∫ 1

1
2− 1

2 H[`]

exp
{
−

(
2r+σ2

2
√

2σ

)2

∆t(τ + `− 1/2)
}

√
∆t(τ + `− 1/2)

{
Erf

[√
6
(
∆A(ξ + 1

2 ) + ∆t(τ + `− 1/2) log(B)
)

σ∆t3/2(τ + `− 1/2)3/2

]

−Erf

[√
6
(
∆A(ξ − 1

2 ) + ∆t(τ + `− 1/2) log(B)
)

σ∆t3/2(τ + `− 1/2)3/2

]}
dτ =: A(`)

ξ .

Interior integration in (3.9) w.r.t. Ã cannot be numerically performed if ` = 0 be-
cause, actually, when τ → 1/2 the exponential function “flattens” the result to zero.
Moreover pay attention also to integration w.r.t. τ , due to high gradient regions in
the integrand function: we simply performed it by the quad Matlab function checking
inputs suitability.
We have to observe that A is therefore a block upper triangular matrix with Toeplitz
structure: the upper triangularity is due to the fact that the fundamental solution
(2.8) is defined only for t̃ > t implying that the matrix entries are non trivial only for
k ≥ j; the Toeplitz structure is due to the dependence on time differences. Moreover
each block has in turn a Toeplitz structure due to the dependence on grid A-points
differences:
(3.10)

A =




A(0) A(1) A(2) · · · A(Nt−1)

0 A(0) A(1) · · · A(Nt−2)

0 0 A(0) . . .
...

...
...

. . . . . . A(1)

0 0 · · · 0 A(0)




withA(`) =




A(`)
0 A(`)

−1 A(`)
−2 · · · A(`)

−NA+1

A(`)
1 A(`)

0 A(`)
−1 · · · A(`)

−NA+2

A(`)
2 A(`)

1 A(`)
0

. . .
...

...
...

. . . . . . A(`)
−1

A(`)
NA−1 A(`)

NA−2 · · · A(`)
1 A(`)

0




,

for ` = 0, .., Nt − 1. This allows to solve the linear system by block backward substi-
tution and to compute only the entries in the first column and in the first row of the
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sub-matrices belonging to the last column in the block structure with considerable
computational saving.
The rhs entries are:

for i = 1, . . . , NA, j = 1, . . . , Nt

(3.11) F (j)
i = −

∫ +∞

−∞

∫ B

0

V (S̃, Ã, T )G(B, Ai, tj ; S̃, Ã, T ) dS̃ dÃ .

In the case of fixed strike payoff

(3.12) F (j)
i = −

∫ +∞

−∞

∫ B

0

max
(
e

Ã
T − E, 0

)
G(B, Ai, tj ; S̃, Ã, T ) dS̃ dÃ

(3.13)

=
B− 2r−σ2

2σ2

2σ
√

2π(T − tj)

∫ B

0

S̃
2r−3σ2

2σ2 +
T−tj
2T exp


−

(T − tj)2(2r + σ2)2 + 4 log2
(

B

S̃

)

8σ2(T − tj)




{
ES̃−

T−tj
2T Erfc

[√
3
2

−2Ai − 2(T − tj) log(B) + 2T log(E) + (T − tj) log(B

S̃
)

σ(T − tj)
3
2

]
+ B

T−tj
2T exp

(
Ai

T
+

σ2(T − tj)3

24 T 2

)

(
−2 + Erfc

[
12 TAi + σ2(T − tj)3 − 6 T

(− 2(T − tj) log(B) + 2 T log(E) + (T − tj) log(B

S̃
)
)

2
√

6 Tσ(T − tj)
3
2

])}
dS̃ .

• The numerical approximation of option price

Solving system (3.8) we get α (that determines the approximation of BIE solution)
and, introducing (3.7) in the integral representation formula (3.1), we obtain an ap-
proximation of V (S,A, t) at any domain point (S,A, t) ∈ Ω × [0, T ) by evaluating6

(3.14)

V (S, A, t) ≈
∫ +∞

−∞

∫ B

0

V (S̃, Ã, T )G(S,A, t; S̃, Ã, T ) dS̃ dÃ+

σ2

2
B2

Nt∑

k=floor[ t
∆t ]+1

NA∑

h=1

α
(k)
h

∫ tk

max(t,tk−1)

∫ Ah

Ah−1

G(S, A, t; B, Ã, t̃) dÃ dt̃ .

With respect to domain methods, SABO reaches a remarkable computational saving
as it is possible to compute the approximate solution at the points of interest avoiding
evaluation at all the discretization mesh points.
In the case of fixed strike payoff, the first integral in (3.14) can be computed as in

6floor[·]:=function that rounds its argument to the nearest integers towards minus infinity.

8



(3.12):

(3.15)

V (S, A, t) ≈ − S−
2r−σ2

2σ2

2σ
√

2π(T − t)

∫ B

0

S̃
2r−3σ2

2σ2 + T−t
2T exp


−

(T − t)2(2r + σ2)2 + 4 log2
(

S

S̃

)

8σ2(T − t)




{
ES̃−

T−t
2T Erfc

[√
3
2

−2A− 2(T − t) log(S) + 2T log(E) + (T − t) log(S

S̃
)

σ(T − t)
3
2

]

+S
T−t
2T exp

(
A

T
+

σ2(T − t)3

24 T 2

)

(
−2 + Erfc

[
12 TA + σ2(T − t)3 − 6 T

(− 2(T − t) log(S) + 2 T log(E) + (T − t) log(S

S̃
)
)

2
√

6 Tσ(T − t)
3
2

])}
dS̃

+
σB

4
√

2π

(
B

S

) 2r−σ2

2σ2 Nt∑

k=floor[ t
∆t ]+1

NA∑

h=1

α
(k)
h

∫ tk

max(t,tk−1)

1√
t̃− t

exp

(
− (t̃− t)2(2r + σ2)2 + 4 log2

(
S
B

)

8(t̃− t)σ2

)

{
Erf

[√
3
2

2(Ah −A)− 2(t̃− t) log(S) + (t̃− t) log
(

S
B

)

(t̃− t)3/2σ

]

− Erf

[√
3
2

2(Ah−1 −A)− 2(t̃− t) log(S) + (t̃− t) log
(

S
B

)

(t̃− t)3/2σ

]}
dt̃ .

• Hedging

The computation of Greeks can be deduced by derivation of the representation formula
(3.1) and using SABO. For the usual example of ∆−Greek, at t ∈ [0, T ), S ∈ (0, B)

(3.16)

∆(S, A, t) :=
∂V

∂S
(S,A, t)

=
∫ +∞

−∞

∫ B

0

V (S̃, Ã, T )
∂G

∂S
(S,A, t; S̃, Ã, T ) dS̃ dÃ+

σ2

2
B2

∫ T

t

∫ +∞

−∞

∂V

∂S̃
(B, Ã, t̃)

∂G

∂S
(S, A, t; B, Ã, t̃) dÃ dt̃

with
(3.17)
∂G

∂S
(S, A, t; S̃, Ã, t̃) = G(S, A, t; S̃, Ã, t̃)

−12(A− Ã)− (t̃− t)2(2r − σ2)− 4(t̃− t) log(S̃S2)
2σ2S(t̃− t)2

.

Once get the coefficients α, the approximation (3.7) of ∂V

∂S̃
(B, Ã, t̃) inserted in (3.16)

straightforwardly gives us ∆−Greek even without computing the primary unknown
V and only at the point (S, A, t) where its derivatives are required. The use of the
closed form expression (3.16) for ∆−Greek allows us to get its approximation with
far superior accuracy with respect to other finite difference method as will be evident
in next numerical examples. This inference could be analogously extended to the
computation of the other Greeks Γ, Θ, ρ and Vega.
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4. Finite Difference Methods. We are going to check the efficiency of SABO
in comparison with Finite Difference (FD) methods because they are, in general, the
most efficient numerical methods among the classical ones that can be applied in
pricing financial derivatives but the interested reader can look at Ref. [17] for an
overall survey of numerical methods in Finance and at Ref. [6] for a survey dedicated
to arithmetic Asian Options (that reasonably can be extended to the geometric case).
We have chosen two particular FD Methods in the remarkable amount of possibilities,
considering ease and practicability in implementation, but in Ref. [11] there is a
deep analysis of a large number of them pointing out a generalized slowness in their
performance.
Equation (2.9) is proven to be hypoelliptic (Refs. [5, 15, 10]), property that guarantees
smooth solution, but it is strongly degenerate: at S = 0 because the logarithmic
coefficient of ∂V

∂A is not defined and in A-variable because the term ∂2V
∂A2 lacks. These

degenerations may cause oscillations in FD numerical solutions and the adopted repair
strategies in general deteriorate accuracy (Ref. [11]).

4.1. Boundary conditions. Boundary conditions (2.12) are non trivially es-
tablished or deduced, as they are not directly involved in the stochastic arguments
for the determination of solution (2.7). Anyway J. Hugger in Ref. [12], where the
wellposedness of the boundary value formulation for arithmetic Asian options with
fixed strike price is treated, gives us some good hints.
Aiming to evaluate the option at S = S∗, A = A∗, t = 0 by FD methods, we need
to reduce the unbounded (S, A)-space (0, B] × R to a bounded set Ω∗ = [Smin, B] ×
[Amin, Amax] such that (S∗, A∗) ∈ Ω∗ and then apply artificial boundary conditions
at the edges. Note that the choice of bounds and boundary conditions is very tricky
and sometimes we cannot avoid to find them empirically.

• We have chosen Amin less or equal to the minimum between the value sug-
gested in (3.5) and A∗.
From the financial point of view, it is meaningless to consider a condition at
A = −∞ for whichever value of S and t and, by consequence, it is not easy
to apply a proper condition at points (S, Amin, t), hence we have decided to
use an upwind method: if log(S) > 0 then ∂V

∂A is approximated by a forward
difference so that the boundary condition at Amin becomes useless, otherwise
by a backward difference, artificially assuming that ∂V

∂A (S, Amin, t) = 0.
• The upper bound is set at Amax ≥ max(A∗, T log(E)).

If, at time t, exp(A/t) − E > 0 then, at maturity, exp(A/T ) − E > 0 since
the average exp(A/T ) is a non-decreasing function of time. For A ≥ T log(E)
and without barriers, the put Asian options with fixed strike price (2.5) is
null and the knowledge of V (S, A, t) in a closed form can be deduced from
the related put-call parity
(4.1)
Cfix(S, A, t)− Pfix(S, A, t) = e−r(T−t)

(
E[eA/T ]− E

)

= S
T−t

T exp
(

A

T
+

[(
r − σ2

2

)
T − t

2T
+

σ2

6
(T − t)2

T 2
− r

]
(T − t)

)
− Ee−r(T−t) .

By consequence, if log(S) > 0 then ∂V
∂A is approximated by a forward dif-

ference and, provided that Amax is “far enough” from A∗, the boundary
10



condition at Amax is set as
(4.2)

V (S, Amax, t) = S
T−t

T exp
(

Amax

T
+

[(
r − σ2

2

)
T − t

2T
+

σ2

6
(T − t)2

T 2
− r

]
(T − t)

)
−Ee−r(T−t) .

Note that this boundary condition exploits some theoretical knowledge about
call Asian options with fixed strike price, hence, the change of payoff condition
needs more a priori analytical calculations in FD than in SABO.
Otherwise, if log(S) < 0 and ∂V

∂A is approximated by a backward difference,
the condition at Amax becomes useless.

• Looking at S-space, at first we can consider Smin = 0 even if the Eq. (2.9) is
there degenerate.
At S = 0 the exact boundary condition is inferred from Eq. (2.9):

lim
S→0

[
∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ rS

∂V

∂S
+ log(S)

∂V

∂A
− rV

]
= lim

S→0

[
∂V

∂t
− rV

]
= 0

because if St = 0 at any time then the average asset price exp(At/t) =
constant and the option value V can be considered independent of stochastic
variables S and A. Therefore, solving the ordinary differential equation

lim
S→0

[
∂V

∂t
− rV

]
= 0

we derive the condition

(4.3) lim
S→0

V (S,A, t) = e−r(T−t) lim
S→0

V (S,A, T ) .

We can even try to optimize the computational domain by reducing the pos-
sibly excessive S-space with a lower bound Smin 6= 0 thought empirically
determined. A proper choice of boundary condition at Smin can be the closed-
formula (2.7) for the option without barrier that in fixed strike case reduces
to one of those available in Ref. [18] for call and put options respectively:
(4.4)

Cfix(S, A, t) = S∗N
(

log S∗
E + (r + σ∗2

2 )(T − t)
σ∗
√

T − t

)
− Ee−r(T−t)N

(
log S∗

E + (r − σ∗2
2 )(T − t)

σ∗
√

T − t

)

S∗ = S
T−t

T exp
(

A

T
+ (µ∗ − r)(T − t)

)

µ∗ =
(

r − q − σ2

2

)
T − t

2T
+

σ2

6
(T − t)2

T 2
, σ∗ =

σ√
3

T − t

T

Pfix(S,A, t) = Ee−r(T−t)N
(
− log S∗

E + (r − σ∗2
2 )(T − t)

σ∗
√

T − t

)
− S∗N

(
− log S∗

E + (r + σ∗2
2 )(T − t)

σ∗
√

T − t

)
.

4.2. Grid and data. Maintaining the grid defined in (3.3) and (3.6) in (A, t)-
domain [Amin, Amax]× [0, T ], for the implementation of FD schemes we need to intro-
duce the grid in S-domain [Smin, B]

(4.5) ∆S :=
B − Smin

NS
, NS ∈ N+, Si := Smin + i∆S, i = 0, . . . , NS

11



and to define the approximated option value

V k
i,h :≈ V (Si, Ah, tk) .

The values of V Nt

ih can be found from the final condition:

V Nt

i,h = V (Si, Ah, T ), i = 0, · · · , NS−1, h = 0, · · · , NA .

For i = 0, · · · , NS−1, if log(Si) > 0 at the boundary A = Amax we use the boundary
condition (4.2) hence, for k = 0, · · · , Nt − 1, we can evaluate

V k
i,NA

= S
T−tk

T
i e

Amax
T +

[(
r−σ2

2

)
T−tk
2T + σ2

6
(T−tk)2

T2 −r

]
(T−tk) − Ee−r(T−tk) ;

if log(Si) < 0 at the boundary A = Amin we use the vanishing Neumann boundary
condition and hence, for k = 0, · · · , Nt − 1, we assign

V k
i,0 = V k

i,1 .

At the boundary S = Smin, we apply the condition (4.3) or (4.4); hence we have

V k
0,h assigned, h = 0, · · · , NA − 1, k = 0, · · · ,Nt − 1 .

At the boundary S = B, we use the boundary condition (2.11); hence

V k
NS ,h = 0, h = 0, · · · , NA, k = 0, · · · , Nt .

4.3. First FD scheme. The first scheme we take into account is the very clas-
sical FD scheme (that we will denote for brevity by FD1): the derivatives of V in
(2.9) are approximated by truncations of Taylor expansions. In particular we use:

• first order backward difference for the time derivative approximation

∂V

∂t
(Si, Ah, tk) =

V k
i,h − V k−1

i,h

∆t
+ O(∆t)

• second order central difference for the S derivative approximation

∂V

∂S
(Si, Ah, tk) =

V k
i+1,h − V k

i−1,h

2∆S
+ O(∆S2)

• second order central difference for the S second order derivative approxima-
tion

∂2V

∂S2
(Si, Ah, tk) =

V k
i+1,h − 2V k

i,h + V k
i−1,h

∆S2
+ O(∆S2)

• if log(Si) > 0, first order forward difference for the A derivative approxima-
tion7

∂V

∂A
(Si, Ah, tk) =

V k
i,h+1 − V k

i,h

∆A
+ O(∆A)

7If log(Si) < 0, we use first order backward difference for the A derivative approximation

∂V

∂A
(Si, Ah, tk) =

V k
i,h − V k

i,h−1

∆A
+ O(∆A)

and formula (4.6) is modified accordingly.
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We can now write down the discrete approximation of (2.9) at each point (Si, Ah, tk):

for i = 1, . . . , NS − 1, h = 0, . . . , NA − 1, k = 0, . . . , Nt − 1
(4.6)
V k

i,h − V k−1
i,h

∆t
+

1
2
σ2S2

i

V k
i+1,h − 2V k

i,h + V k
i−1,h

∆S2
+rSi

V k
i+1,h − V k

i−1,h

2∆S
+log(Si)

V k
i,h+1 − V k

i,h

∆A
−rV k

i,h = 0

rearranging the scheme in a compact form

V k−1
i,h = aiV

k
i,h + biV

k
i+1,h + ciV

k
i−1,h + diV

k
i,h+1

where

ai = 1−∆t
(
r + σ2i2 + log(Si)

∆A

)
, bi = ∆t

2

(
ri + σ2i2

)
, ci = ∆t

2

(− ri + σ2i2
)
, di = ∆t

∆A log(Si) .

It is easy to see that the scheme, backward computing the new value V k−1
i,h , is explicit

in time. We want to remark two more things: first, that the weights depends only on
i therefore on the S variable and, second, that values V k

i,0 having Amin as a coordinate
give no contribution to the scheme (in accordance with observation in Sec. 4.1).

4.4. Second FD scheme. The idea of this method (that we will denote for
brevity by FD2) is taken from Ref. [13] and it is conceived only for the case log(Si) >
0. The PDE (2.9) is collocated at the points

(Si, Ah+ 1
2
, tk+ 1

2
) :=

(
Si, Ah +

∆A

2
, tk +

∆t

2

)
.

Instead of partial derivatives, we use the following approximations, based on suitable
Taylor expansions and standard finite difference approximations:

∂V

∂t
(Si, Ah+ 1

2
, tk+ 1

2
) =

1
2

(∂V

∂t
(Si, Ah, tk+ 1

2
) +

∂V

∂t
(Si, Ah+1, tk+ 1

2
)
)

+ O(∆A2)

=
V k+1

i,h − V k
i,h

2∆t
+

V k+1
i,h+1 − V k

i,h+1

2∆t
+ O(∆t2 + ∆A2) ,

∂V

∂S
(Si, Ah+ 1

2
, tk+ 1

2
) =

1
2

(∂V

∂S
(Si, Ah+1, tk+1) +

∂V

∂S
(Si, Ah, tk)

)
+ O(∆t2 + ∆A2)

=
V k+1

i+1,h+1 − V k+1
i−1,h+1

4∆S
+

V k
i+1,h − V k

i−1,h

4∆S
+ O(∆t2 + ∆A2 + ∆S2) ,

∂2V

∂S2
(Si, Ah+ 1

2
, tk+ 1

2
) =

1
2

(∂2V

∂S2
(Si, Ah+1, tk+1) +

∂2V

∂S2
(Si, Ah, tk)

)
+ O(∆t2 + ∆A2)

=
V k+1

i−1,h+1 − 2V k+1
i,h+1 + V k+1

i+1,h+1

2∆S2
+

V k
i−1,h − 2V k

i,h + V k
i+1,h

2∆S2
+ O(∆t2 + ∆A2 + ∆S2) ,

V (Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(
V k

i,h + V k+1
i,h+1

)
+ O(∆t2 + ∆A2) ,

∂V

∂A
(Si, Ah+ 1

2
, tk+ 1

2
) =

1
2

(∂V

∂A
(Si, Ah+ 1

2
, tk+1) +

∂V

∂A
(Si, Ah+ 1

2
, tk)

)
+ O(∆t2)

=
V k+1

i,h+1 − V k+1
i,h

2∆A
+

V k
i,h+1 − V k

i,h

2∆t
+ O(∆t2 + ∆A2) .
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After substituting the above approximations into the PDE and discarding the error
terms, we get the following equations for the approximate values of the option prices:
(4.7)
aiV

k
i−1,h + biV

k
i,h + ciV

k
i+1,h = diV

k+1
i−1,h+1 + eiV

k+1
i,h+1 + f iV

k+1
i+1,h+1 + gi(V

k
i,h+1 − V k+1

i,h )

where, using the notation λ = ∆t
∆S2 :

ai = λ
2

(
− S2

i σ2 + rSi∆S
)

, bi =
(
1 + λS2

i σ2 + log(Si)∆t
∆A + r∆t

)
, ci = −λ

2

(
S2

i σ2 + rSi∆S
)

,

di = −ai , ei =
(
1− λS2

i σ2 + log(Si)∆t
∆A − r∆t

)
, f i = −ci , gi =

(
− 1 + log(Si)∆t

∆A

)
.

The procedure for solving the option pricing equation is as follows:

1. Fill the values V Nt

i,h , i = 0, · · · , NS , h = 0, · · · , NA using the payoff function.
2. For each k = Nt − 1 : −1 : 0
(a) Apply the boundary condition at A = Amax to define V k

i,NA
, for i = 0, · · · , NS .

(b) For each h = NA − 1 : −1 : 0, solve the three-diagonal system in the unknowns
the values V k

i,h, for i = 1, · · · , NS − 1, using the boundary condition at S = Smin and
S = B.

This is a time-explicit difference scheme too. If we need the option price only at
t = 0, then it is not necessary to store the full matrix V of approximate option
prices; in fact we need only two levels, say Vold corresponding to t = tk+1 and Vnew

corresponding to the current time level t = tk. At the beginning Vold is computed
using the final condition and at the end of each time step the values of Vnew are copied
to Vold. Anyway it requires the resolution of a linear system: the three-diagonal matrix
M = diag(a, b, c) can be assembled and factorized at the beginning, outside the cycles,
depending only on the S-grid but its determinant is very high and it rises with the
decreasing of ∆S causing numerical troubles.

5. Comparisons. Numerical examples concern the pricing problem of a call
Asian option with an up-and-out barrier (2.9)-(2.12) and fixed strike payoff (2.4).

• 1st example
In this example we use the same finance parameters found in the Release Notes of
Matlabr R2017a in the section “Pricing Asian Options” (and shown in Table 1)8,
referring to the use of function asianbykv that provides the analytical solution to
geometric Asian option that is available in Ref. [14] in the contract without barriers.
We computed, at t = 0 and A = 0, a fixed strike call option approximation with
up-and-out barrier at S = 150 =: B, by setting Amin = 0, Amax ≈ 5, in accordance
with (3.5) and (3.4), and Nt = NA = 20. The results obtained by SABO are displayed
in Fig. 2 on the left as function of S.

B T E r σ
150 1 90 0.035 0.2

Table 1: Fixed strike up-and-out call option data.

8These values of financial parameters are however usual in scientific articles: look at Refs. [6,
18, 19].
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Fig. 2: Call up-and-out Geometric Asian option values and the associated ∆-values
obtained by SABO.

We can observe that the solution appears to be smooth and, in compliance with pre-
visions, it stays under the option value without barriers with a behavior analogous to
that of European barrier options (look at Ref. [8]).
The same behavior is catched by the two proposed FD methods so, in order to discuss
about efficiency and convergence, look at stabilization of digits in tables below.
For what concerns SABO, the stabilization of digits at S = 100, 120, 140 is fast (Tab.
2 on the left): at each level of mesh refinement (doubling of parameters Nt and NA),
with related computational time increasing (quadrupling), there is the achievement
of about 1 digit of accuracy. As expected (Ref. [8]), the nearer the barrier the slower
the convergence.

V (S, 0, 0)

Nt = NA S = 100 S = 120 S = 140 elapsed time (sec)
10 10.2170 17.3650 8.0877 3.0 · 100

20 10.1480 17.2561 7.9929 1.1 · 101

40 10.1419 17.2960 8.1400 4.3 · 101

80 10.1432 17.3061 8.1507 1.7 · 102

160 10.1438 17.3086 8.1551 6.9 · 102

320 10.1439 17.3094 8.1566 3.0 · 103

640 10.1440 17.3096 8.1570 1.3 · 104

∆(S, 0, 0)

Nt = NA S = 100 S = 120 S = 140
10 0.6214 −0.0491 −0.6895
20 0.6149 −0.0441 −0.7356
40 0.6142 −0.0383 −0.7643
80 0.6144 −0.0380 −0.7733

160 0.6144 −0.0379 −0.7742
320 0.6144 −0.0378 −0.7742
640 0.6144 −0.0378 −0.7742

Table 2: V (S, 0, 0) and ∆(S, 0, 0) evaluated by SABO at S = 100, 120, 140.

Moreover we can straightforwardly compute ∆ (Tab. 2 on the right) by formula (3.16)
(global behavior displayed in Fig. 2 on the right). Some reference values to check the
reliability of formula (3.16) can be given by the approximation of ∆ with the fourth
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order centered formula
(5.1)

∆ =
−V (S + 2∆S, 0, 0) + 8V (S + ∆S, 0, 0)− 8V (S −∆S, 0, 0) + V (S − 2∆S, 0, 0)

12∆S

applied to SABO values V computed by Nt = NA = 320 and reducing ∆S. These
values gives us also an idea of the refinement level of S-grid to be used in finite dif-
ference methods (Tab. 3).

∆(S, 0, 0) by formula (5.1)

∆S S = 100 S = 120 S = 140
8 0.6103 −0.0375 −0.8209
4 0.6142 −0.0378 −0.7741
2 0.6144 −0.0378 −0.7742
1 0.6144 −0.0378 −0.7742

Table 3: ∆(S, 0, 0) evaluated by formula (5.1) at S = 100, 120, 140.

For what concerns FD1, the chosen discretization parameters are ∆t = 10−3/2k,
∆A = 10−2/2k and, for the discretization of S−interval (0, B), either ∆S = 2 or
∆S = 1. The results are reported respectively in Tabs. 4 and 5.

V (S, 0, 0)

k S = 100 S = 120 S = 140 elapsed time (sec)
1 11.7620 18.0788 8.4291 3.7 · 100

2 10.9704 17.6711 8.2893 3.2 · 101

3 10.5597 17.4862 8.2243 1.3 · 102

4 10.3508 17.3993 8.1934 5.2 · 102

5 10.2454 17.3572 8.1784 2.1 · 103

6 10.1926 17.3364 8.1710 8.2 · 103

7 10.1661 17.3261 8.1673 3.5 · 104

∆(S, 0, 0)

k S = 100 S = 120 S = 140
1 0.5621 −0.0649 −0.7993
2 0.5812 −0.0503 −0.7853
3 0.5948 −0.0436 −0.7789
4 0.6031 −0.0404 −0.7759
5 0.6076 −0.0389 −0.7744
6 0.6100 −0.0381 −0.7737
7 0.6112 −0.0378 −0.7733

Table 4: V (S, 0, 0) evaluated by FD1 at S = 100, 120, 140, with ∆S = 2.

V (S, 0, 0)

k S = 100 S = 120 S = 140 elapsed time (sec)
1 11.7656 18.0744 8.4242 1.4 · 101

2 10.9740 17.6666 8.2845 5.4 · 101

3 10.5632 17.4817 8.2195 2.2 · 102

4 10.3541 17.3947 8.1887 9.4 · 102

5 10.2488 17.3526 8.1737 4.1 · 103

6 10.1959 17.3319 8.1663 1.7 · 104

7 10.1694 17.3216 8.1626 6.9 · 104

∆(S, 0, 0)

k S = 100 S = 120 S = 140
1 0.5634 −0.0651 −0.8002
2 0.5826 −0.0506 −0.7863
3 0.5962 −0.0438 −0.7799
4 0.6045 −0.0407 −0.7768
5 0.6091 −0.0392 −0.7754
6 0.6115 −0.0384 −0.7746
7 0.6127 −0.0381 −0.7743
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Table 5: V (S, 0, 0) evaluated by FD1 at S = 100, 120, 140, with ∆S = 1.

The poor efficiency of FD1 w.r.t. SABO is evident observing that, with the same
CPU time order of computation9 SABO is much more accurate than FD1. Further,
referring to FD1, note that the mesh refinement in S-domain is raw in fact, comparing
Tabs. 4 and 5, we can observe that, doubling the S-mesh, the third decimal place
for V is still not fixed although the time of computation has grown by one order of
magnitude. The values of ∆ are doubtful because, when ∆S = 2, results monotoni-
cally decrease refining ∆t and ∆A but not towards the right convergence values as it
is suggested by results in Tab. 4 lower than results in Tab. 5 with the refinement of
∆S.

For what concerns FD2, results are reported in Table 6 and 7, with ∆t = ∆A =
0.1/2k+2, ∆S = 2 and ∆S = 1 respectively. Approximations of derivatives in t and A
variables are both of second order accuracy, this is reflected in finer results achieved
by FD2 w.r.t. FD1 where approximations are of first order only.

V (S, 0, 0)

k S = 100 S = 120 S = 140 elapsed time (sec)
1 9.7634 15.9334 7.8061 1.6 · 100

2 9.7112 17.2597 8.3164 6.0 · 100

3 10.0357 17.3093 8.1742 2.3 · 101

4 10.1157 17.3205 8.1677 1.1 · 102

5 10.1344 17.3186 8.1658 6.1 · 102

6 10.1386 17.3174 8.1647 3.0 · 103

7 10.1395 17.3166 8.1641 1.3 · 104

∆(S, 0, 0)

k S = 100 S = 120 S = 140
1 0.4751 −0.0028 −0.7297
2 0.5754 +0.0001 −0.7849
3 0.6115 −0.0352 −0.7734
4 0.6126 −0.0367 −0.7733
5 0.6126 −0.0372 −0.7732
6 0.6126 −0.0374 −0.7731
7 0.6125 −0.0374 −0.7730

Table 6: V (S, 0, 0) evaluated by FD2 at S = 100, 120, 140, with ∆S = 2.

Anyway also with FD2, accuracy is still influenced by the coarseness of S-grid
and SABO is still more performing.

V (S, 0, 0)

k S = 100 S = 120 S = 140 elapsed time (sec)
1 9.7672 15.9289 7.8006 4.8 · 100

2 9.7159 17.2545 8.3118 2.1 · 101

3 10.0396 17.3046 8.1694 7.6 · 101

4 10.1191 17.3160 8.1630 3.0 · 102

5 10.1377 17.3141 8.1611 1.2 · 103

6 10.1419 17.3129 8.1599 4.7 · 103

7 10.1428 17.3121 8.1594 1.9 · 104

∆(S, 0, 0)

k S = 100 S = 120 S = 140
1 0.4762 −0.0029 −0.7306
2 0.5767 −0.0001 −0.7859
3 0.6129 −0.0354 −0.7743
4 0.6141 −0.0370 −0.7743
5 0.6141 −0.0375 −0.7741
6 0.6140 −0.0377 −0.7740
7 0.6140 −0.0377 −0.7739

9All the numerical simulations have been performed with a laptop computer: CPU Intel i5, 4Gb
RAM. Moreover, the structure of SABO linear system is very suitable for parallelization that should
lead to further fastening.
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Table 7: V (S, 0, 0) evaluated by FD2 at S = 100, 120, 140, with ∆S = 1.

In order to optimize computational costs, in FD2, we tried to reduce the asset
domain to an interval (Smin, B) with Smin > 0 and to apply the boundary condition
(4.4). Comparing the computational costs of Tabs. 6 and 8 (left), one can observe that
the savings achieved by reduction of computational domain are completely canceled
by the major calculation due to the evaluation of (4.4). Moreover comparing results
in Tab. 8 (left and right), one can note that numerical results are quite sensible to
the choice of an artificial left bound.

V (S, 0, 0) S ∈ (50, B)

k S = 100 S = 120 S = 140 elapsed time (sec)
1 9.7634 15.9334 7.8061 6.4 · 100

2 9.7112 17.2597 8.3164 2.3 · 101

3 10.0357 17.3093 8.1742 9.2 · 101

4 10.1157 17.3205 8.1677 3.8 · 102

5 10.1344 17.3186 8.1658 1.6 · 103

6 10.1386 17.3174 8.1647 6.8 · 103

7 10.1395 17.3166 8.1641 2.8 · 104

V (S, 0, 0) S ∈ (70, B)

k S = 100 S = 120 S = 140 elapsed time (sec)
1 9.6510 15.9098 7.8023 1.1 · 100

2 9.6629 17.2441 8.3141 3.9 · 100

3 10.0147 17.2972 8.1719 1.5 · 101

4 10.1048 17.3096 8.1653 6.4 · 101

5 10.1266 17.3080 8.1634 3.2 · 102

6 10.1317 17.3068 8.1622 1.5 · 103

7 10.1328 17.3060 8.1617 6.7 · 103

Table 8: V (S, 0, 0) evaluated by FD2 at S = 100, 120, 140, with ∆S = 2 over (Smin, B).
On the left: Smin = 50. On the right: Smin = 70.

• 2nd example
In this example, the barrier is set at S = 110 = B and the finance parameters applied
are taken from [19]:

B T E r σ
110 1 100 0.15 0.05

Table 9: Fixed strike up-and-out call option data.

This set of data is troubling because r >> σ2 and, by consequence, the diffusive
term in Eq. (2.9) is dominated by the transport term; this kind of situation is well
know also in the simpler Black and Scholes context (Ref. [16]) as it emphasizes
instabilities (look at Fig. 3) that can be handled by mesh refinements or weakening
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accuracy by artificial diffusive terms.
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Fig. 3: On the left: numerical solution simulated by SABO with Nt = NA = 30 with
the appearance of a wrong oscillation. On the right: erroneous numerical solution
simulated by FD2 with Nt = 80 and NA = 100.

Also here Amin = 0 and Amax ≈ 5, in accordance with (3.5) and (3.4).
SABO needs a mesh of at least Nt = NA = 50 basis functions to obtain a shape
without oscillations (look at Fig. 4) but no other particular tricks.
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Fig. 4: On the left: correct geometric Asian up-and-out call option value obtained
by SABO with data in Tab. 9. On the right: comparison between geometric Asian
option values with up-and-out barrier and without barriers.

Concerning convergence, we can observe in Tab. 10 the stabilization of digits at
S = 90, 97, 104 together with the CPU computational time in relation to the mesh
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refinement.

Nt = NA S = 90 S = 97 S = 104 elapsed time (sec)
50 0.0036 0.3138 0.0628 3.4 · 101

100 0.0110 0.3291 0.0622 1.4 · 102

200 0.0150 0.3299 0.0623 5.7 · 102

400 0.0160 0.3300 0.0623 2.4 · 103

800 0.0162 0.3301 0.0623 2.5 · 104

Table 10: V (S, 0, 0) evaluated by SABO at S = 90, 97, 104.

For what concerns FD1, results are reported in Tabs 11 and 12, where ∆t = 10−3/2k

and ∆A = 10−2/2k for ∆S = 2 and ∆S = 1 respectively. Even if oscillations are
not evident plotting the global solution as function of S, numerical results in Tab. 13
seem to be quite unstable and far from convergence: doubling the S-grid there is a
substantial change in approximate solution.

k S = 90 S = 97 S = 104 elapsed time (sec)
1 2.1459 1.5092 0.0795 3.1 · 100

2 1.2189 1.0876 0.0645 1.1 · 101

3 0.6548 0.8171 0.0563 8.9 · 101

4 0.3332 0.6429 0.0522 3.7 · 102

5 0.1668 0.5325 0.0505 1.6 · 103

6 0.0884 0.4652 0.0499 6.5 · 103

7 0.0532 0.4262 0.0496 2.7 · 104

Table 11: V (S, 0, 0) evaluated by FD1 at S = 90, 97, 104, with ∆S = 2 (instead of
V (97, 0, 0), we have evaluated (V (96, 0, 0) + V (98, 0, 0))/2).

k S = 90 S = 97 S = 104 elapsed time (sec)
1 2.1907 1.3826 0.1078 5.8 · 100

2 1.2532 0.9922 0.0857 4.9 · 101

3 0.6813 0.7425 0.0728 2.0 · 102

4 0.3515 0.5823 0.0658 8.2 · 102

5 0.1764 0.4814 0.0625 3.3 · 103

6 0.0911 0.4206 0.0611 1.4 · 104

7 0.0518 0.3861 0.0606 5.3 · 104

Table 12: V (S, 0, 0) evaluated by FD1 at S = 90, 97, 104, with ∆S = 1.

Results reported in Tab. 13 refer to FD2, applied with ∆t = ∆A = 0.1/2k+2 and
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∆S = 2 and show the same bad behavior of FD1 scheme.

k S = 90 S = 97 S = 104 elapsed time (sec)
1 2.1116 1.1155 0.0473 1.3 · 100

2 1.0794 0.7553 0.0402 4.4 · 100

3 0.5115 0.5410 0.0387 1.7 · 101

4 0.2215 0.4199 0.0423 8.1 · 101

5 0.0929 0.3672 0.0493 4.1 · 102

6 0.0446 0.3641 0.0502 2.0 · 103

7 0.0290 0.3761 0.0491 8.8 · 103

Table 13: V (S, 0, 0) evaluated by FD2 at S = 90, 97, 104 (instead of V (97, 0, 0), we
have evaluated (V (96, 0, 0) + V (98, 0, 0))/2), with ∆S = 2.

However refining in S (for numerical results with ∆S = 1 and ∆S = 0.5, look at
Tabs. 14 and 15 respectively), FD2 improves more rapidly towards results obtained
by SABO that remains noticeably more efficient.

k S = 90 S = 97 S = 104 elapsed time (sec)
1 2.1287 1.0161 0.0701 2.6 · 100

2 1.0961 0.6858 0.0557 1.0 · 101

3 0.5255 0.4894 0.0496 4.0 · 101

4 0.2308 0.3785 0.0503 1.6 · 102

5 0.0965 0.3303 0.0567 7.0 · 102

6 0.0436 0.3290 0.0608 2.8 · 103

7 0.0255 0.3427 0.0602 1.1 · 104

Table 14: V (S, 0, 0) evaluated by FD2 at S = 90, 97, 104, with ∆S = 1.

k S = 90 S = 97 S = 104 elapsed time (sec)
1 2.1305 0.9954 0.0744 7.7 · 100

2 1.0990 0.6696 0.0586 3.0 · 101

3 0.5285 0.4760 0.0515 1.2 · 102

4 0.2331 0.3665 0.0517 6.4 · 102

5 0.0975 0.3186 0.0578 3.6 · 103

6 0.0435 0.3165 0.0624 1.8 · 104

7 0.0246 0.3294 0.0619 1.8 · 105

8 0.0188 0.3334 0.0619 6.6 · 105

9 0.0172 0.3343 0.0620 3.3 · 106

Table 15: V (S, 0, 0) evaluated by FD2 at S = 90, 97, 104, with ∆S = 0.5.

• 3rd example
In this example, the barrier is set at S = 1 = B and the finance parameters applied
are:

B T E r σ
1 1 0.5 0.035 0.4
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Table 16: Fixed strike up-and-out call option data.

Note that considering B = 1 implies Amin ≈ −1 and Amax ≈ 1 (according to
(3.5) and (3.4)) and asset values lower than 1. The solution obtained by SABO with
∆t = 0.1 and ∆A = 0.2 is plotted in Fig. 5 together with the analytical solution of
the fixed strike call option without barriers.
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Fig. 5: Comparison between geometric Asian option values with up-and-out barrier
and without barriers.

In Tab. 17 we can observe the stabilization of digits at S = 0.5, 0.7, 0.9 together with
the CPU computational time in relation to the mesh refinement.

Nt = NA S = 0.5 S = 0.7 S = 0.9 elapsed time (sec)
10 0.2911 · 10−1 0.7788 · 10−1 0.4693 · 10−1 1.5 · 100

20 0.2918 · 10−1 0.7730 · 10−1 0.4275 · 10−1 5.8 · 100

40 0.2919 · 10−1 0.7736 · 10−1 0.4114 · 10−1 2.7 · 101

80 0.2919 · 10−1 0.7739 · 10−1 0.4058 · 10−1 1.5 · 102

160 0.2919 · 10−1 0.7740 · 10−1 0.4040 · 10−1 9.4 · 102

320 0.2919 · 10−1 0.7740 · 10−1 0.4035 · 10−1 2.2 · 103

Table 17: V (S, 0, 0) evaluated by SABO at S = 0.5, 0.7, 0.9.

In order to check numerical results, we consider only FD1 method with approximation
of A derivative by backward difference because, as suggested in Sec. 4.1, if log(S) < 0
the information moves backward in time from the left bound of A-domain. Results in
Tab. 18 are obtained for Amin = −1, Amax = 0, ∆t = 10−3 · 2−k, ∆A = 10−2 · 21−k

and ∆S = 0.01.

k S = 0.5 S = 0.7 S = 0.9 elapsed time (sec)
1 0.3247 · 10−1 0.7923 · 10−1 0.4075 · 10−1 7.0 · 10−1

2 0.3084 · 10−1 0.7833 · 10−1 0.4055 · 10−1 1.9 · 100

3 0.3002 · 10−1 0.7787 · 10−1 0.4045 · 10−1 7.2 · 100

4 0.2960 · 10−1 0.7765 · 10−1 0.4040 · 10−1 2.9 · 101

5 0.2940 · 10−1 0.7753 · 10−1 0.4038 · 10−1 2.6 · 102

6 0.2929 · 10−1 0.7747 · 10−1 0.4037 · 10−1 1.1 · 103
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Table 18: V (S, 0, 0) evaluated by FD1 at S = 0.5, 0.7, 0.9, with ∆S = 0.01.

6. Conclusions. The comparisons between SABO method and some basic finite
difference methods illustrate the efficiency of SABO.
SABO allows to avoid inaccurate choice of boundary conditions and tricky evaluations
of fictitious bounds for the computational domain. SABO proves to be stable with
respect to the variation of financial parameters and discretization parameters; on the
contrary, we noted a particular difficulty in choosing a starting triad (∆S, ∆A, ∆t)
rightly calibrated for running simulations with FD methods whose stability is very
sensitive to the variation of the discretization parameters. Furthermore, SABO ap-
pears to have higher accuracy in computing both option values and Greeks.
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